I just got back from my first trip to the annual meeting of AERA, the American Educational Research Association. AERA is apparently the biggest educational research conference in America. I had a fantastic time (highlight: I got to have dinner with Jim Gee!) and my presentation went well (highlight: I argued with the panel's discussant over why thinking about gender inequity isn't enough if you're not also thinking about class inequity!), and I don't think I made too much of a fool out of myself.
I really enjoyed my first trip to this conference, though when I got home I learned from others that there are significant challenges to be made about the structure, format, and ethos of AERA. I am coming around to that way of thinking and will post my thoughts on this soon.
For now, though, I want to share with you the paper I had to writereallyfast when I got back from the conference. It's a final paper for a course on computational technologies, and because I was thinking about AERA, social justice, and why the conference's biggest events mostly featured staid, mainstream thinkers, I decided to write the paper as closing remarks for the conference. I am sure that once the AERA organizers read my closing remarks, they will invite me to deliver next year's closing remarks in person. I am also available to deliver opening remarks and keynote addresses.
Notes on being the chainsaw you wish to see in the world: On a critical computational literacy agenda for a time of great urgency
Closing Remarks for the AERA Annual Meeting
Jenna McWilliams, Indiana University
May 4, 2010
I want to thank you for giving me the opportunity to speak this evening, at the close of this year’s
annual meeting of the American Educational Research Association.
I want to talk to you tonight about the nature of urgency.
Because urgency characterizes the work we do, doesn’t it? The education of our children—our efforts to prepare them to join in on this beautiful and necessary project of naming and claiming the world—it is certainly a matter of the deepest urgency. Even more so because of the war being waged over the bodies and minds of our children.
It’s a war whose contours are deeply familiar to many of us—more so the longer we have been a part of this struggle over education. Certainly the issues we’re fighting over have limned the edges of our educational imagination for generations: How do we know what kids know? How can we prepare them for success in their academic, vocational, and life pursuits? What should schools look like, and how can we fill our schools up with qualified teachers who can do their jobs well? No matter what else, then, at least we’re continuing to ask at least some of the right questions.
Yet a deeper than normal sense of urgency has characterized this year’s annual meeting. It was a “hark ye yet again” sort of urgency: We stood, once again, on a knife’s edge, waiting for word of legislative decisions to be passed down from the policymakers—among whom there are very few educational researchers—to the researchers—among whom there are very few policymakers.
And what sorts of decisions were we waiting to hear on? The same sorts we’ve been wringing our hands over for a decade or more: Decisions over the standardization of education. Development of a proposed set of Common Core Standards whose content seemed painfully anemic to many of us. We’re waiting to learn whether teacher pay will be linked to student performance on standardized tests. Massive budget cuts leading to termination of teachers and programs—these certainly feel familiar to us, though the scope of these cuts and the potential consequences of these decisions seem to loom larger than ever before. The decision by the Texas Department of Education to
pervert and politicize its K-12 curriculum by removing references to historical events and even terminology that might offend members of the political Right-—the specifics are new, but the story feels familiar.
A call to action was paired with the clanging of the alarm bells.
Ernest Morrell told us that he had counseled his kids to prepare presentations that not only described their work and achievements but that also included a call to action. “I told them, ’Don’t let them leave this room without marching orders’,” he said. “We need to do better. AERA needs to do better.”
He’s right, of course. And I plan to heed Ernest’s advice and not let you leave this room without your marching orders. But first I want to explore the edges of this new urgency, explain why critical computational literacy is part and parcel of the urgency of this moment, and explain exactly what I mean by the term.
There are at least two reasons for the acuteness of the urgency that has characterized this year’s AERA conference. The first is that many of us had hoped for something more, something better, something more honorable from the Obama administration. After eight years living in a political wasteland, many of us felt a glee all out of proportion with reality upon hearing
Barack Obama’s position on educational issues. We felt hope. Even a warm half cup of water can feel like a long, tall drink when you’ve just walked out of a desert.
It’s a long revolution, you know. And if Obama authorizes something that
looks very much like No Child Left Behind, and if he mandates merit pay based on student performance on standardized tests, and if the recent changes made by the religious right to the Texas state history curriculum stand, and if school board nationwide continue to make terrible, terrible decisions about how to cut costs, and if we see the largest teacher layoff in our history and class sizes creep up to 40 students per room and if computers get taken over by test prep programs and remedial tutoring systems, well, we’ll do our best to live to fight another day. The other day, I listened to Jim Gee talking about his deep anger at the people who run our education system. But he also said something we should all take to heart: “I’ll fight them until I’m dead,” he said. Let’s embrace this position. If they want to claim the hearts and minds of our children, let’s make it so they do it over our cold, dead bodies.
Let’s not let ourselves begin to believe that the stakes are any lower than they actually are. This is the second reason for the urgency this year: There is the very real prospect that the decisions we make within our educational system will get taken up by education departments across the globe. Around 30 of us attended an early-morning session called
“Perspectives From the Margins: Globalization, Decolonization, and Liberation.” The discussants, Michael Apple and Dave Stovall, spoke with great eloquence about the nature of this urgency. You’ll forgive me for secretly recording and then transcribing a piece of each of their talks here.
Michael Apple, responding to a powerful
presentation on rural science education by researcher Jeong-Hee Kim and teacher-researcher Deb Abernathy, spoke of the far-reaching implications of the local decisions we make:
As we sit here, I have people visiting me from China. They are here to study No Child Left Behind, and they are here to study performance pay. All of the decisions we make that that principal and Deb and you are struggling against are not just struggles in the United States, they are truly global—so that the decisions we make impact not just the kids in the rural areas of the United State, but the rural areas of the people who are invisible, the same people who deconstruct our computers.
Dave Stovall, from the University of Illinois in Chicago, underscored the need to think of the global implications of the policy decisions that intersect within the realm of education:
Arizona is Texas is Greece is Palestine is where we are. This day and time is serious. When a person in Texas cannot say the world capitalism in a public school, we live in serious times. When a person in Arizona can be taken out of a classroom at five years old, to never return, we live in serious times. When we can rationalize in the state of Illinois and city of Chicago that having 5 grams of heroin on a person accounts for attempted murder, we’re living in different times. When we can talk about in Palestine that young folks have now been deemed the most violent threat to the Israeli state, we’re living in different times. And now, how do we engage and interrupt those narratives based again on the work we do?
These times are different and serious, and talking about critical computational literacy may make me look a little like Nero with his fiddle. But critical computational literacy, or indeed its paucity in our education system, is the dry kindling that keeps Rome burning.
I’ll explain why. Let’s talk for a minute about another Apple, the electronics company Apple Corp. The year 2010 marked the release of Apple’s iPad, a tablet computer designed as a multipurpose information and communication tool. Despite mixed reviews of its usability and features,
records show an estimated 500,000 units sold between pre-orders and purchases in the first week after the iPad’s release.
This has been accompanied by a push for consideration of the iPad’s utility for education, especially higher education, with schools working to develop technical support for iPad use on campus and at least one university, Seton Hall,
promising to provide all incoming freshmen with iPads along with Macbooks. One question—-how might the iPad transform education?-—has been the topic of conversation for months.
“The iPad,”
crowed Neil Offen in the Herald-Sune (2010), “could be more than just another way to check your e-mail or play video games. It has the potential to change the way teachers teach and students learn.”
Certainly, these conversations reflect a positive shift in attitudes about what comprises literacy in the 21st Century. If you attended the fantastic symposium on Sunday called
“Leveraging What We Know: A Literacy Agenda for the 21st Century,” you heard from the panelists a powerfully persuasive argument that “literacy” is no longer simple facility with print media. Indeed, facility with print media may still be necessary, but it’s no longer sufficient. As the emergence of the iPad, the Kindle, and similar literacy tools make evident, the notion of “text” has become more aligned with Jay Lemke’s (2006) description of “multimedia constellations”—loose groupings of hypermediated, multimodal texts that exist “not just in the imagination of literary theorists, but in simple everyday fact” (pg. 4). Add to this the ongoing contestation of the tools we use to access and navigate those constellations of social information, and the urgency of a need to shift how we approach literacy becomes increasingly obvious.
As anyone who works in the literacy classroom knows, this is by no means a simple task. This task is complicated even further by the dark side of this new rhetoric about literacy: There’s a technological determinism hiding in there, an attitude that suggests an educational edition of Brave New Worldism. Offen’s celebration of the iPad aligns with the approach of Jeremy Roschelle and his colleagues (2000), who a decade ago trumpeted the transformative potential of a range of new technologies. In explaining that “certain computer-based applications can enhance learning for students at various achievement levels,” they offer descriptions of promising applications for improving how and what children learn. The ‘how’ and the ‘what’ are separated because
not only can technology help children learn things better, it also can help them learn better things” (pg. 78, emphasis mine).
More recently, the media scholar Henry Jenkins (2006) described the increasingly multimodal nature of narratives and texts as “convergence culture.” As corporate and private interests, beliefs, and values increasingly interact through cheaper, more powerful and more ubiquitous new technologies, Jenkins argues, our culture is increasingly defined by the collision of media platforms, political ideologies, and personal affinities. Jenkins celebrates the emergence of this media convergence, arguing that “(i)n the world of media convergence, every important story gets told, every brand gets sold, and every consumer gets courted across multiple media platforms” (pg. 3).
Brave new world, indeed. But there is reason to wear a raincoat to this pool party, as a cursory examination of the developing “Apple culture” of electronics confirms. The iPad, celebrated as a revolution in personal computing, communication, and productivity—and marketed as an essential educational tool—is a tool with an agenda. The agenda is evident in Apple’s decision to block the educational visual programming software Scratch: Though Apple executives have claimed that applications like Scratch may cause the iPad to crash, others argue that the true motivation behind this decision is to block a tool that supports media production. The Scratch application allows users to build new applications for the iPad, which Bruckman (2010) suggests goes far beyond Apple’s unstated interest in designing its products primarily for media consumption.
There is no closest competitor to the iPad, so users who want to leverage the convenience, coolness, and computing power of this product must resign themselves to the tool Apple provides. Similarly, as Apple develops its growing monopoly in entertainment (iPods), communications (iPhone), and portable computing (Macbook), Apple increasingly has the power to decide what stories to tell, and why, and how.
Now let’s go back to the other Apple, Michael Apple, who argues quite convincingly about the colonization of the space of the media by the political right wing (2006). We have, he argues, politicians deciding what we pay attention to, and we have corporations deciding how we pay attention to it. This makes the need for critical computational literacy even more important than ever before. Perhaps it’s more important than anything else, though I’ll leave that to the historians to decide.
What is this thing I’m calling “critical computational literacy”? Since I’m almost the only person using this term, I want to start by defining it. It has its roots in computational literacy, which in itself bears defining. Andy diSessa (2001) cautions us against confusing computational literacy with “computer literacy,” which he describes as being able to do things like turning on your computer and operating many of its programs. His definition of computational literacy, he explains, makes computer literacy look “microscopic” in comparison (p. 5). For him, computational literacy is a “material intelligence” that is “achieved cooperatively with external materials” (p. 6).
This is a good start in defining computational literacy but probably still not enough. And please do remember that I will not let you leave this room without marching orders; and if I want you to know what to do, I have to finish up the definition. Let’s add to diSessa’s definition a bit of the abstraction angle given to us by Jeanette Wing (2008), who shifts the focus slightly to what she labels “computational thinking.” She describes this as
a kind of analytical thinking. It shares with mathematical thinking in the general ways in which we might approach solving a problem. It shares with engineering thinking in the general ways in which we might approach designing and evaluating a large, complex system that operates within the constraints of the real world. It shares with scientific thinking in the general ways in which we might approach understanding computability, intelligence, the mind and human behaviour. (pg. 3716)
For Wing, the essential component of computational thinking is working with abstraction, and she argues that an education in computational thinking integrates the “mental tool” (capacity for working with multiple layers of abstraction) with the “metal tool” (the technologies that support engagement with complex, abstract systems).
So. We have diSessa’s “material intelligence” paired with Wing’s “computational thinking”—a fair enough definition for my purposes. But what does it look like? That is, how do we know computational literacy when we see it?
The answer is: it depends. Though we have some nice examples that can help make visible what this version of computational literacy might look like. Kylie Peppler and Yasmin Kafai (2007), who by the way have
a new book out on their work with the Computer Clubhouse project (you can buy a copy up at the book fair), offer instructive examples of children working with Scratch. Jorge and Kaylee, their two case studies, are learners who make creative use of a range of tools to build projects that extend, as far as their energy and time will allow, the boundaries of what is possible to make through a simple visual programming language. Bruce Sherin, Andy diSessa, and David Hammer (1993) give an example of their work with Dynaturtle to advance a theory of “design as a learning activity”; in their example, learners work with the Boxer programming language to concretize abstract thought.
Certainly, these are excellent examples of computational literacy in action. But I would like to humbly suggest that we broaden our understanding of this term far beyond the edges of programming. Computational literacy might also be a form of textual or visual literacy, as learners develop facility with basic html code and web design. It might be the ability to tinker—to actually, physically tinker, with the hardware of their electronics equipment. This is something that’s typically frowned upon, you know. Open up your Macbook or your iPhone and your warranty is automatically null and void. This is not an accident; this is part of the black box approach of electronics design that I described earlier.
Which leads me to the “critical” component of computational literacy. This is no time for mindless tinkering; we are faced with a war whose terms have been defined for us by members of the political Right, and whose battles take place through tools and technologies whose uses have been defined for us by corporate interests. Resistance is essential. In the past, those who resisted the agendas of software designers and developers were considered geeks and freaks; they were labeled “hackers” and relegated to the cultural fringes (Kelty 2008). Since then, we have seen an explosion in access to and affordability of new technologies, and the migration to digitally mediated communication is near-absolute. The penetration of these technologies among young people is most striking: (include statistics). Suddenly, the principles that make up the “hacker ethos” (Levy, 1984) take on new significance for all. Suddenly, principles that drove a small subset of our culture seem more like universal principles that might guide cultural takeup of new technologies:
- Access to computers—and anything which might teach you something about the way the world works—should be unlimited and total.
- All information should be free.
- Mistrust authority—promote decentralization.
- Hackers should be judged by their hacking, not criteria such as degrees, age, race, sex, or position.
- You can create art and beauty on a computer.
- Computers can change your life for the better. (Levy 1984)
If these principles seem overtly ideological, overtly libertarian, that’s because they are. And I’m aware that in embracing these principles I run the risk of alienating a fairly significant swath of my audience. But there’s no time for gentleness. This is no time to hedge. I believe, as Michael Apple and Dave Stovall and Rich Ayers and others have argued persuasively and enthusiastically, that we are fighting to retrieve the rhetoric of education from the very brink. It’s impossible to fight a political agenda with an apolitical approach. We must fight now for our very future.
That’s the why. Now I’d like to tackle the how. If we want our kids to emerge from their schooling experience with the mindset of critical computational literacy, we need to first focus on supporting development of critical computational literacy in our teachers. They, too, are subject to all of the pressures I listed earlier, and add to the mix at least one more: They are subject to the kind of rhetoric that Larry Cuban (1986) reminds us has characterized talk of bringing new technologies into the classroom since at least the middle of the 20th century. As he researched the role of technologies like radio, film, and television in schools, he described the challenges of even parsing textual evidence of technologies’ role:
Television was hurled at teachers. The technology and its initial applications to the classroom were conceived, planned, and adopted by nonteachers, just as radio and film had captured the imaginations of an earlier generation of reformers interested in improving instructional productivity…. Reformers had an itch and they got teachers to scratch it for them. (p. 36)
This certainly hearkens, does it not, of the exhortation of Jeremy Roschelle and his colleagues? I repeat:
promising applications for improving how and what children learn. The ‘how’ and the ‘what’ are separated because not only can technology help children learn things better, it also can help them learn better things.”
Teachers are also faced with administrators who say things like these quotes, taken from various online conversations about the possible role of the iPad in education.
I absolutely feel the iPad will revolutionize education. I am speaking as an educator here. All it needs are a few good apps to accomplish this feat.
Tablets will change education this year and in the future because they align neatly with the goals and purposes of education in a digital age.
And finally, the incredibly problematic:
As an educational administrator for the last eleven years, and principal of an elementary school for the past seven…after spending three clock hours on the iPad, it is clearly a game changer for education.
Three hours.
Three hours, and this administrator is certain that this, more than any previous technology, will transform learning as we know it. Pity the teachers working at his school, and let’s hope that when the iPad gets hurled at them they know how to duck.
We must prepare teachers to resist. We must prepare them to make smart, sound decisions about how to use technologies in the classroom and stand tall in the face of outside pressures not only from political and corporate interests but from well-meaning administrators and policymakers as well. There is a growing body of evidence that familiarity with new tools is—just like print literacy—necessary but not sufficient for teachers in this respect.
There is evidence, however, that experience with new technologies when paired with work in pedagogical applications of those technologies can lead to better decision-making in the classroom. I recommend the following three-part battle plan:
First, we need to start building a background course in new media theory and computational thinking into our teacher education programs. My home institution, Indiana University, requires exactly one technology course, and you can see from the description that it does its best to train pre-service teachers in the use of PowerPoint in the classroom:
W 200 Using Computers in Education (1-3 cr.)Develops proficiency in computer applications and classroom software; teaches principles and specific ideas about appropriate, responsible, and ethical use to make teaching and learning more effective; promotes critical abilities, skills, and self-confidence for ongoing professional development.
Fortunately, we can easily swap this course out for one that focuses on critical computational literacy, since the course as designed has little practical use for new teachers.
Second, we need to construct pedagogy workshops that stretch from pre-service to early in-service teachers. These would be designed to support lesson development within a specific domain, so that all English teachers would work together, all Math teachers, all Science teachers, and so on. This could stretch into the early years of a teacher’s service and support the development of a robust working theory of learning and instruction.
Finally, we might consider instituting ongoing collaborative lesson study so that newer teachers can collaborate with veteran teachers across disciplines. I offer this suggestion based on my experience working in exactly this environment over the last year. In this project, teachers meet monthly to discuss their curricula and to share ideas and plan for future collaborative projects. They find it intensely powerful and incredibly useful as they work to integrate computational technologies into their classrooms.
I’m near the end of my talk and would like to finish with a final set of marching orders. If we want to see true transformation, we need first to tend our own gardens. Too often—far, far too far too often—we educational researchers treat teachers as incidental to our interventions. At the risk of seeming like an Apple fanboy, I return once again to the words of Michael Apple, who argued brilliantly this week that it’s time to rethink how we position teachers in our work. We say we want theory to filter down to the “level” of practice; the language of levels, Apple says, is both disingenuous and dangerous. Let’s tip that ladder sideways, he urges us, and he is absolutely correct. We live and work in the service of students first, and teachers second. We should not forget this. We should take care to speak accordingly.
These are your marching orders: To bring the message of critical computational literacy and collaboration during this time of great urgency back to your home institutions, to the sites where you work, to the place where you work shoulder to shoulder with other researchers, practitioners, and students. I urge you to stand and to speak, loudly, and with as much eloquence as you can muster, about the issues of greatest urgency to you. This is no time to speak softly. This is no time to avoid offense. In times of great urgency, it’s not enough to be the
change we wish to see in the world; we need to be the
chainsaws that we wish to see in the world. That is what I hope you will do when you leave this convention center. Thank you.
References
Apple, M.W. (2006). Educating the “right” way: Markets, standards, God, and inequality. New York: Routledge.
Cuban, L. (1986). Teachers and machines. New York: Teachers College Press.
diSessa, A. A. (2000). Changing minds : Computers, learning, and literacy. Cambridge, Mass.: MIT Press.
Jenkins, H. (2006). Convergence culture: Where old and new media collide. Cambridge, MA: MIT Press.
Kelty, C. (2008). Two bits: The cultural significance of free software. Durham, NC: Duke University Press.
Lemke, J. (2006). Toward Critical Multimedia Literacy: Technology, research, and politics. In M.C. McKenna et al. (Eds.), International handbook of literacy and technology: Volume II. Mahwah, NJ: Lawrence Erlbaum Associates Inc. (3-14).
Levy, S 1984. Hackers: Heroes of the computer revolution. New York: Anchor Press/Doubleday.
Peppler, K. A., & Kafai, Y. B. (2007). From SuperGoo to Scratch: exploring creative digital media production in informal learning. Learning, Media and Technology, 32(2), 149-166.
Roschelle, J. M., Pea, R. D., Hoadley, C. M., Gordin, D. N., & Means, B. M. (2000). Changing how and what children learn in school with computer-based technologies. The future of children, 10(2), 76–101.
Sherin, B., DiSessa, A. A., & Hammer, D. M. (1993). Dynaturtle revisited: Learning physics through collaborative design of a computer model. Interactive Learning Environments, 3(2), 91-118.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions A, 366(1881), 3717-3717.
**Update, 5/6/10, 1:09 p.m.: I have changed this post slightly to remove an unfair attack against a presenter at this year's AERA Annual Meeting. He points out in the comments section below that my attack was unfair, and I agree and have adjusted the post accordingly.